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Abstract

Advances in multi-region electrophysiology have enabled neuroscientists to collect1

state-of-the-art datasets comprised of observations of neural dynamics across brain2

regions. These resources have the potential to help us better understand the dy-3

namics of how populations of neurons communicate with each other during visual4

decision making. To this end, we introduce Multi-Region Gated Neural ODEs (MR-5

gnODE), extending gated neural ODEs to model communication between brain6

regions through separate gated ODE modules. MR-gnODE aims to leverage new7

multi-region data to accurately identify communication dynamics while maintain-8

ing interpretability. We validate this model by recovering communication dynamics9

between coupled recurrent neural nets (RNNs) and then demonstrate its utility in10

modeling multi-region communication in the landmark IBL dataset. This work11

emphasizes the importance of data-driven discovery of brain-wide communication12

dynamics from emerging large-scale neural datasets.13

1 Introduction14

Large-scale neural recording technologies now enable simultaneous observation of neural population15

activity across multiple brain regions, revealing highly distributed computations underlying sensory,16

cognitive, and motor processes [20, 15]. While computational modeling has driven significant17

progress in interpreting the dynamics of single populations of neurons [2, 14, 17, 16], identifying18

how multiple populations coordinate their dynamics remains a substantial challenge in modeling19

the brain-wide dynamics of behavior. Fortunately, new datasets, such as the International Brain Lab20

(IBL) dataset, comprising over 547 neuropixels probe insertions spanning more than 240 mouse21

brain regions [12], introduce new opportunities to better understand the dynamics of multi-region22

communication.23

Despite unprecedented access to multi-region datasets, identifying communication dynamics between24

populations of neurons remains an outstanding challenge. Communication signals are not directly25

observable, models must account for unrecorded inputs and complex local dynamics, and accurate26

data reconstruction does not guarantee correct inference of the underlying communication patterns27

[13]. Several modeling approaches described in Section 1.1 have made notable progress in accurately28

identifying communication dynamics. But, just as neural populations display rich dynamical struc-29

ture, interactions between populations may also display complex dynamical coupling. Models of30

communication dynamics should not only accurately infer communication dynamics, but also do so31

in an expressive and interpretable manner.32

To this end, neural ordinary differential equations (nODEs) [1] are well-suited for data-driven33

discovery of communication dynamics. Recent work has demonstrated that gated neural ODEs34

(gnODEs) offer adaptive timescales and expressive dynamical structure [10]. To date, nODEs have35

only been applied to single neural populations [8]. We introduce Multi-Region Gated Neural ODEs36

(MR-gnODE), a novel framework that extends gated neural ODEs to model communication dynamics37

between multiple brain regions. Our approach explicitly models both within-region dynamics and38
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between-region communication channels using separate gated ODE modules with region-specific and39

communication-specific timescales. Our main contributions are: (1) We formulate MR-gnODE for40

data-driven modeling of multi-region neural dynamics with explicit communication channels; (2) we41

validate that MR-gnODE can accurately capture both regional dynamics of evidence accumulation and42

motor control in recurrent neural networks (RNNs) as well as communication between such RNNs.43

(3) We apply MR-gnODE to identify communication dynamics between primary and secondary44

motor cortex using the IBL dataset. This approach is well-suited for identifying and interpreting rich45

low-dimensional dynamical structure in neural communication.46

1.1 Background and Related Work47

Neural computation models for inter-regional communication face fundamental tradeoffs between48

capturing temporal dynamics and maintaining interpretability. Static methods like reduced-rank49

regression [19] identify instantaneous communication subspaces through low-rank linear functions50

but cannot capture temporal dependencies or nonlinear relationships. Dynamical system approaches51

express temporal dependencies between populations as either linear [4] or nonlinear [7] switch-52

ing dynamical systems. We will use the multi-population recurrent switching linear dynamical53

system (mp-rSLDS) described in [4] as a benchmark in our experiments. Other methods model54

communication dynamics as impulse response functions (IRF) [3], Gaussian processes [5], or RNNs55

[18]. MR-LFADS [13] uses a sequential VAE with coupled GRUs to jointly infer communication,56

unobserved inputs, and local dynamics, improving identifiability by constraining communication to57

reconstructed firing rates rather than flexible latents.58

Neural ODEs model dynamics as żt = Fθ(zt,xt) [1], where Fθ is a neural network, zt are latent59

factors and xt are observations. żt is a velocity field for latent variables z at time t. The "gated" neural60

ODE extension (Fig. 1a) provides adaptive timescales through τ żt = Gθ(zt,xt)⊙ [−zt+Fθ(zt,xt)]61

[10]. The added gating function Gθ can modulate the rate of change in latent dynamics based on both62

xt and zt. This allows the multi-region extension of the gnODE (MR-gnODE) described in Section63

2 to learn smooth, time-varying, nonlinear dynamics rather than linear [3] or discrete nonlinear64

dynamics (rSDLS) [4, 7]. Unlike all previous approaches described above, which identify dynamics65

through discrete changes in latent state (zt−1 → zt), MR-gnODE identifies dynamics by inferring66

a velocity field (flow field) conditioned on zt and xt. This benefits interpretability, as Fθ directly67

expresses the attractor structure [9] rather than requiring the sampling of trajectories to identify fixed68

points in communication dynamics, as is necessary with RNNs [13]. Though many studies identify69

low-rank structure in RNNs, it’s Kim et al. [10] showed that high-dimensional GRUs did not always70

favor low-dimensional solutions to low-dimensional tasks while gnODEs did - making them a more71

ideal choice for accurately inferring low-dimensional dynamics.72

2 Multi-Region Gated Neural ODE (MR-gnODE)73

We now present our Multi-Region Gated Neural ODE (MR-gnODE) framework, which extends74

gated neural ODEs (gnODE) to explicitly model communication dynamics between brain regions.75

Our approach decomposes multi-region systems into three key components: within-region gnODEs,76

between-region communication gnODEs, and region-specific readouts.77

2.1 Model formulation78

Consider a system with R regions, where each region r has latent state zrt ∈ Rdr and communication79

channels m(s→r)
t ∈ Rdc capture information flow from region s to region r. The MR-gnODE region80

dynamics shown in Figure 1b are given by:81

τrż
r
t = Gr

θ

(
zrt +m

(→r)
t ,xr

t

)
⊙
[
−zrt + F r

θ

(
zrt +m

(→r)
t ,xr

t

)]
(1)

where aggregated messages are defined as:82

m
(→r)
t =

∑
s ̸=r

w(s→r) · ψθ(m
(s→r)
t ) (2)

and communication dynamics are formulated as:83

τmṁ
(s→r)
t = Gm

θ

(
zst ,m

(s→r)
t

)
⊙

[
−m
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Figure 1: Gated Neural ODE architecture. (a) Single-region gated Neural ODE (gnODE) showing
the gating mechanism Gθ ⊙ [−z + Fθ], temporal dynamics, and linear readout Wrzt + br that
maps latent states to observations. (b) Multi-Region gated Neural ODE (MR-gnODE) with multiple
interacting regions connected through communication channels. Each region maintains its own latent
dynamics while receiving aggregated messages from other regions. Note that panel A shows temporal
dynamics of gnODE while panel B shows communication dynamics at a single timestep.

F r
θ and Fm

θ are multi-layer perceptrons (MLPs) defining nODEs for region dynamics ż and com-84

munication dynamics ṁ, respectively. Gr
θ and Gm

θ are MLPs that gate regional and communication85

dynamics, respectively, through element-wise scaling rate of change in the latent dynamics produced86

by F r
θ and Fm

θ . ψθ is a neural network that transforms communication channel states into region-87

dimensional space, and w(s→r) are learnable scalar weights that enable asymmetric communication88

effects between regions. The aggregated message m
(→r)
t is computed by summing all transformed89

incoming communication channels before adding to the region state. To model activity readouts, we90

reconstruct the observable data for each region using:91

x̂r
t =Wrz

r
t + br (4)

which is a linear readout that maps the latent state of region r to reconstructed neural activity x̂r
t .92

This allows the model to be trained by minimizing the reconstruction error between the model’s93

predictions, x̂r
t , and the observed neural data, xr

t . As represented in Figure 1b, the latent state of94

a single region only evolves according to inputs xt, its own latent state zt
r, and the aggregated95

incoming messages from other regions m(→r)
t .96

Training and implementation: We train MR-gnODE using Euler integration for the forward pass97

with time step dt = 0.01, updating states as zt+dt = zt + dt · żt and mt+dt = mt + dt · ṁt (Fig98

1b). The total loss combines reconstruction accuracy with communication regularization:99

L =

R∑
r=1

T∑
t=1

∥xr
t − x̂r

t∥2 + λcomm

T∑
t=1

∥mt∥ (5)

where x̂r
t = W rzrt are region-specific linear readouts, xr

t are target outputs, and λcomm penalizes100

excessive communication to prioritize learning internal dynamics. Model parameters include velocity101

field networks F r and Fm, gating networks Gr and Gm, communication transformation ψ, asym-102

metric weights w(s→r), and readout matrices W r. Parameters are updated using backpropagation103

through time (BPTT).104

3 Experiments105

3.1 Decision-Motor Task106

We first evaluated MR-gnODE on a synthetic decision-motor task designed to test inter-regional107

communication. The task consists of a multi-region RNN - an evidence integration RNN, and a108

motor control region RNN. During training, the evidence region receives noisy sensory input for109

15 time steps and must integrate this information to guide the motor region’s output velocity for a110

leftward or rightward reach over the remaining 15 time steps of the trials (Fig. 2a). The evidence111

region is trained to produce the correct integration of the noisy signal. The motor region is trained to112

produce the correct velocities while only receiving communication input from the evidence region.113

The resulting evidence RNN learns low-dimensional decision integration dynamics as represented in114
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Figure 2b, where the PCA transformation of the evidence RNN hidden state diverges for left evidence115

and right evidence trials. Figure 2b also demonstrates that motor RNN learns rotational dynamics [2]116

to produce sinusoidal velocity profiles for left/right reaches. The specific objective is described in117

Appendix 6.2.118

Figure 2: Decision-motor task validation and model performance. (a) Task architecture with
evidence integration and motor control regions connected by communication channels. (b) Ground
truth RNN dynamics showing diverging trajectories for left/right evidence trials in evidence region
and rotational dynamics in motor region. (c) Model reconstruction performance comparing MR-
gnODE against baselines. (d) MR-gnODE predictions vs ground truth trajectories for left/right trials.
(e) Communication analysis showing evidence-motor communication diverges during accumulation
while motor-evidence communication diverges near execution. (f) Robustness under noisy observa-
tions (left) and partial observations (right). (g-h) MR-gnODE generated flow fields for regional and
communication dynamics and mean trajectories for held-out left/right trials. MR-gnODE produces
interpretable integration and rotational region dynamics (g) and integration communication dynamics
(h)

Next, we trained several multi-region models to reconstruct the observed hidden state data from119

the Evidence-Motor RNN data-generating model. Figure 2c demonstrates that MR-gnODE and120

mp-rSDLS [4] both learn to nearly perfectly reconstruct the neural population dynamics of both121

regions, achieving 0.97 and 0.95 R2 scores on test data. This is verified in Figure 2d, where the first122

PC of MR-gnODE mean predictions for left and right trials match the first PC of ground truth RNN123

data for these trials. For left/right conditions, MR-gnODE evidence accumulation (evidence PC1)124

diverges during the integration period, while PC1 of the motor region does not diverge until just before125

execution. The communication analysis in (Fig. 2)e demonstrates that MR-gnODE successfully126

recovers both the directionality of evidence to motor communication but also the informational127

content as the first PC of evidence-motor communication diverges as evidence is accumulated for left128

and right trials. The first PC of motor-evidence communication does not diverge until just before129

execution.130

Visualizing the first PC or evaluating models based on R2 and mean squared error (MSE) in recon-131

struction tasks can be misleading, as a model that learns the identity transform could achieve perfect132

reconstruction on training and testing data. To investigate whether MR-gnODE is truly recovering133

neural dynamics, we create two challenging settings for evaluation: noisy observations and partial134

observations. In noisy observations, the input neural data xt is corrupted as xt +N (0, 0.1) but the135
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model must still predict xt. Though we could not evaluate mp-rSLDS under this setting due to library136

constraints (Appendix 6.1), we added a Kalman filter baseline which explicitly models Gaussian noise,137

making it a competitive baseline. Figure 2 demonstrates that while Reduced Rank Regression (RRR)138

performance is significantly hindered in this setting, both Kalman Filter and MR-gnODE maintain139

near perfect reconstruction of uncorrupted neural data. The right panel of Figure 2f demonstrates140

model performance where the model must predict the full xt while being trained on inputs with 10%141

of neurons removed. Among 5 cross-validated folds with different held-out neurons and different142

train/test data, MR-gnODE successfully recovers the intrinsic dynamics of both regions, while RRR143

fails to do so. The loss function and weight updates for MR-gnODE did not account for estimation144

error in the held-out neurons, so a mapping from held-in to held-out neurons could not be learned145

during training.146

A unique feature of MR-gnODE is that it models region and communication dynamics as ODEs,147

so we can also test the model recovered the true Evidence-Motor RNN dynamics by investigating148

gradients (ż) of the latent state z during trials. Figure 2g-h shows PCA-projected flow fields for the149

evidence region of the trained MR-gnODE model, the motor region, and bidirectional communication150

channels. For each 3D visualization, we compute ż at grid points using example trial inputs, with151

non-visualized dimensions fixed to mean values from left (blue) versus right (red) decision trials (see152

Section 6.4 for implementation details). The evidence region exhibits integrator-like flow toward153

decision-specific attractors. The motor region exhibits partial rotational dynamics, with opposing154

flow fields for leftward versus rightward reach conditions. Communication channels, m and ṁ,155

show context-dependent flow patterns: evidence-to-motor channels exhibit divergent flows based on156

decision context, while motor-to-evidence channels remain largely quiescent except near movement157

states. These conditional flow projections demonstrate that MR-gnODE recovers the dynamical158

structure of evidence integration, communication of evidence to the motor region, and the motor159

control dynamics. Notably, this result differs from traditional flow-field analysis, which is not160

normally dependent on inputs xt [10, 11]. We emphasize the importance of inferring communication161

flow without requiring inputs or dimensions fixed to mean values for future work.162

3.2 IBL Motor Control Task163

To demonstrate the utility of MR-gnODE in inferring neural dynamics from data, we analyzed multi-164

region mouse motor cortex data from the International Brain Laboratory (IBL) using MR-gnODE .165

We used a session with simultaneously recorded neural populations from primary motor cortex (MOp,166

162 neurons) and secondary motor cortex (MOs, 46 neurons) during the IBL visual decision task [12].167

Neural activity was aligned to movement onset (−200ms to +300ms) and binned at 50ms resolution.168

The MR-gnODE model was configured with region-specific hidden dimensions (MOs -32 units,169

MOp - 64 units) and trained to reconstruct the population dynamics while inferring inter-regional170

communication through the learned coupling parameters.171

Figure 3a shows that MR-gnODE achieves accurate reconstruction of both MOp and MOs population172

activity. The observed MOp responses (Fig. 3a,c) display characteristic movement-related modulation173

patterns that are moderately captured by the model predictions (Fig. 3a,c right), achieving R2 = 0.5174

on held-out trials. Characteristic of the known functions of the secondary motor cortex in movement175

planning and the primary motor cortex in movement initiation and execution, Figure 3b shows that the176

distance between neural population activity projected into PC space for left and right wheel turn trials177

diverges sooner in MOs than MOp. The trained MR-gnODE model demonstrates this directional178

flow of information in Figure 3d, where the norm of average communication channel activity from179

MOs to MOp peaks during movement preparation and early execution, while MOp feedback to180

MOs gradually increases as movements become more prominent. Figure 3e shows some, albeit181

non-significant, divergence in MOs to MOp left turn and right communication dynamics leading up182

the movement. This divergence does not appear in MOp to MOs feedback until the wheel turn is183

executed. Despite only a minimal difference in average communication channel activity for left and184

rightward movements, analysis of the movement-conditioned Jacobian of communication channel185

states (Fig. 3f) provides a clearer picture of diverging neural states leading up to left/right movements.186

For each communication channel, we compute J(1→2) = ∂ṁ(1→2)

∂m(1→2) and J(2→1) = ∂ṁ(2→1)

∂m(2→1) , where187

m(·→·) represents the communication channel states between regions (with MOp = 1, MOs = 2). By188

computing separate Jacobians for left and right choice trials (e.g., J(2→1)
left and J

(2→1)
right ), we measure189

the choice-dependent angular divergence θ = arccos
(

⟨Jleft,Jright⟩
|Jleft||Jright|

)
, quantifying how communication190
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Figure 3: IBL motor cortex multi-region communication dynamics. (a) Primary motor cortex
(MOp) observed population activity aligned to movement onset. (b) Distance between PCA transform
of neural population activity for left vs right wheel turns. (c) Secondary motor cortex (MOs) neural
responses and MR-gnODE reconstruction. (d) Norm of MR-gnODE MOp/MOs mean communication
channel activity. (e) Same as d. but mean taken over left and right trials seperately. MOs on left
and MOp on right. (f) Jacobian angular divergence analysis computing gradients of communica-
tion dynamics for left vs right trials and measuring angular separation between condition-specific
messaging.

dynamics differentiate based on behavioral choice. Here, MOs to MOp communication channel191

choice-dependent divergence significantly increases during movement preparation (−100ms to192

0ms) while MOp to MOs communication demonstrates little choice-dependent divergence. Thus,193

we conclude the MR-gnODE model learned communication patterns consistent with the known194

hierarchical organization of the motor cortex. MOs contribute higher-level control signals that195

appear during planning and propagates this information to MOp, which participates in initiation196

and execution. Together, these results demonstrate that MR-gnODE not only accurately models197

multi-region neural dynamics but also reveals interpretable communication principles from neural198

data.199

4 Discussion200

Understanding how distinct brain regions coordinate the neural population dynamics to generate201

behavior remains a fundamental challenge in neuroscience. Most previous approaches for modeling202

population dynamics have focused on a single region, but as more multi-region data becomes publicly203

available, we can start to approach modeling communication dynamics. Here, we introduced MR-204

gnODE, a multi-region neural ODE framework that simultaneously learns within-region dynamics205

and inter-regional communication patterns from neural recordings. By directly modeling region and206

communication velocity fields (ż, ṁ), we used MR-gnODE to visualize inferred phase portraits (Fig.207

2g-h) and identify changes in the movement-conditioned Jacobian of communication dynamics in the208

motor cortex (JMOs→MOp, Fig. 3f). Previously proposed multi-region approaches like MR-LFADS209

or mp-rSLDS would require sampling trajectories [6] to visualize attractor structure.210

Our experiments demonstrate that MR-gnODE accurately captures both synthetic and biological211

multi-region dynamics while revealing interpretable communication principles. Yet, much future212

work is needed to complete and validate the MR-gnODE framework. In future work, we aim to213

enable the model to receive or infer exogenous inputs ut and add variational inference for z and214

m. Further ablation experiments and improved baselines, such as MR-LFADS [13], are required to215

validate/contextualize the model’s capacity for identifying neural dynamics. We hope MR-gnODE216

can leverage emerging large datasets of multi-region neural activity for data-driven discovery of rich217

brain-wide communication dynamics. Regardless, this work aims to emphasize the importance of218

interpretable modeling of multi-region communication flow dynamics.219
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6 Technical Appendices and Supplementary Material283

6.1 Code Availability284

All code is available at : REDACTED FOR DOUBLE BLIND REVIEW. For mp-rSLDS, we used285

the SSM library: https://github.com/lindermanlab/ssm.286

6.2 Motor Evidence RNN287

Model architecture: The multi-region RNN consists of two functionally specialized modules288

connected via a communication pathway:289

Evidence integration RNN: The evidence region is implemented as an LSTM network that processes290

noisy sensory inputs: ht, ct = LSTM(xt, ht−1, ct−1). xt ∈ R2 represents the bivariate evidence291

input at time t, and ht, ct ∈ R64 are the hidden and cell states respectively. The evidence integration292

output is computed as: yt =Wht + b. where W and b are learned parameters.293

Motor control RNN: The motor region is implemented as a separate LSTM that receives communi-294

cation signals from the evidence region: ht, ct = LSTM([scomm
t ; pt−1], ht−1, ct−1) where the input295

concatenates the communication signal scomm
t ∈ R with the previous motor position pt−1 ∈ R2. The296

motor velocity output is a 2-d vector: vt =Wht + b.297

Evidence-motor communication: The communication signal from evidence to motor region is298

computed as:scomm
t =W commht + bcomm where W comm transforms the evidence hidden state into a299

scalar communication signal.300

Task data generation: Training data is generated for a decision-motor task with the following
structure: During the evidence phase (t ∈ [1, Te] where Te = 15 time steps), noisy sensory inputs are
generated:

x
(i)
t =

[
(1− di) · κ+ ϵ

(0)
t

di · κ+ ϵ
(1)
t

]

where di ∈ {0, 1} indicates the target direction (left/right) for trial i, κ = 0.3 is the coherence level,301

and ϵt ∼ N (0, σ2) with σ = 0.7 represents Gaussian noise.302

The ground truth evidence integration is computed as: It = tanh
(∑t

k=1(x
(1)
k − x

(0)
k )

)
303

In the motor phase (t ∈ [Te, T ]) Target velocities are generated with confidence modulation: vt =304

di · αi · f(t) + ηt where:305
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• αi = clip(|ITe |/20, 0, 1) is the confidence derived from evidence strength306

• f(t) = 0.5 sin(π · t−Te

T−Te
) defines the velocity profile307

• ηt is smooth noise generated from low-frequency sinusoids with random phase308

Training procedure: The model is trained using two mean squared error losses:309

Evidence integration loss:310

Le =
1

T

T∑
t=1

(yt − It)
2 (6)

Motor velocity loss:311

Lm =
1

T

T∑
t=15

∥v̂t − vt∥22 (7)

The total loss is:312

L = Le + Lm (8)

6.3 Model parameters313

The parameters used in all experiments can be found in: GIT REPO FOLDER RETRACTED FOR314

DOUBLE BLIND REVIEW315

6.4 Input Conditioned Flow Field Visualization316

To visualize the dynamics of MR-gnODE, we project the high-dimensional flow fields onto three-317

dimensional subspaces using PCA. We construct separate visualizations for each region z(r) and318

communication channel m(r→s).319

Given trajectories {s(i)t }Ntrials
i=1 from experimental trials where st = [z

(0)
t , z

(1)
t ,m

(0→1)
t ,m

(1→0)
t ], we320

visualize the dynamics of each region z(r) as follows. We compute PCA on the concatenated trial321

data for z(r) to obtain projection matrix Vr ∈ Rdr×3 containing the first three principal components.322

To compute the flow field, we create a grid G in the 3D PCA space spanning the data distribution. At323

each grid point p ∈ G, we:324

1. Inverse transform to original space: z(r)∗ = Vrp+ z̄(r)325

2. Construct full state using mean state s̄(c) from decision type c with z(r) replaced by z(r)∗326

3. Compute MR-gnODE dynamics: τ ż = Gθ(z,x
(c))⊙ [−z+ Fθ(z,x

(c))]327

4. Project flow back to PCA space: ṗ = V T
r ż(r)328

where x(c) represents example trial inputs for decision type c. Mean trajectories for each decision type329

are projected as p(c)
t = V T

r (z̄
(r),c
t − z̄(r)). The same procedure is applied to visualize communication330

channels m(r→s).331
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