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Abstract

Advances in multi-region electrophysiology have enabled neuroscientists to collect
state-of-the-art datasets comprised of observations of neural dynamics across brain
regions. These resources have the potential to help us better understand the dy-
namics of how populations of neurons communicate with each other during visual
decision making. To this end, we introduce Multi-Region Gated Neural ODEs (MR-
gnODE), extending gated neural ODEs to model communication between brain
regions through separate gated ODE modules. MR-gnODE aims to leverage new
multi-region data to accurately identify communication dynamics while maintain-
ing interpretability. We validate this model by recovering communication dynamics
between coupled recurrent neural nets (RNNs) and then demonstrate its utility in
modeling multi-region communication in the landmark IBL dataset. This work
emphasizes the importance of data-driven discovery of brain-wide communication
dynamics from emerging large-scale neural datasets.

1 Introduction

Large-scale neural recording technologies now enable simultaneous observation of neural population
activity across multiple brain regions, revealing highly distributed computations underlying sensory,
cognitive, and motor processes [20, [15]. While computational modeling has driven significant
progress in interpreting the dynamics of single populations of neurons [2, [14, {17, [16]], identifying
how multiple populations coordinate their dynamics remains a substantial challenge in modeling
the brain-wide dynamics of behavior. Fortunately, new datasets, such as the International Brain Lab
(IBL) dataset, comprising over 547 neuropixels probe insertions spanning more than 240 mouse
brain regions [12], introduce new opportunities to better understand the dynamics of multi-region
communication.

Despite unprecedented access to multi-region datasets, identifying communication dynamics between
populations of neurons remains an outstanding challenge. Communication signals are not directly
observable, models must account for unrecorded inputs and complex local dynamics, and accurate
data reconstruction does not guarantee correct inference of the underlying communication patterns
[13]. Several modeling approaches described in Section[I.T|have made notable progress in accurately
identifying communication dynamics. But, just as neural populations display rich dynamical struc-
ture, interactions between populations may also display complex dynamical coupling. Models of
communication dynamics should not only accurately infer communication dynamics, but also do so
in an expressive and interpretable manner.

To this end, neural ordinary differential equations (nODEs) [[1]] are well-suited for data-driven
discovery of communication dynamics. Recent work has demonstrated that gated neural ODEs
(gnODEs) offer adaptive timescales and expressive dynamical structure [10]]. To date, nODEs have
only been applied to single neural populations [8]. We introduce Multi-Region Gated Neural ODEs
(MR-gnODE), a novel framework that extends gated neural ODEs to model communication dynamics
between multiple brain regions. Our approach explicitly models both within-region dynamics and
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between-region communication channels using separate gated ODE modules with region-specific and
communication-specific timescales. Our main contributions are: (1) We formulate MR-gnODE for
data-driven modeling of multi-region neural dynamics with explicit communication channels; (2) we
validate that MR-gnODE can accurately capture both regional dynamics of evidence accumulation and
motor control in recurrent neural networks (RNNs) as well as communication between such RNNs.
(3) We apply MR-gnODE to identify communication dynamics between primary and secondary
motor cortex using the IBL dataset. This approach is well-suited for identifying and interpreting rich
low-dimensional dynamical structure in neural communication.

1.1 Background and Related Work

Neural computation models for inter-regional communication face fundamental tradeoffs between
capturing temporal dynamics and maintaining interpretability. Static methods like reduced-rank
regression [19] identify instantaneous communication subspaces through low-rank linear functions
but cannot capture temporal dependencies or nonlinear relationships. Dynamical system approaches
express temporal dependencies between populations as either linear [4] or nonlinear [7] switch-
ing dynamical systems. We will use the multi-population recurrent switching linear dynamical
system (mp-rSLDS) described in [4] as a benchmark in our experiments. Other methods model
communication dynamics as impulse response functions (IRF) [3]], Gaussian processes [5], or RNNs
[L8]. MR-LFADS [13] uses a sequential VAE with coupled GRUs to jointly infer communication,
unobserved inputs, and local dynamics, improving identifiability by constraining communication to
reconstructed firing rates rather than flexible latents.

Neural ODEs model dynamics as z; = Fp(z¢,x;) [1ll, where Fy is a neural network, z; are latent
factors and x, are observations. z; is a velocity field for latent variables z at time ¢. The "gated" neural
ODE extension (Fig. ) provides adaptive timescales through 7z; = Gy (2, X¢) © [— 2 + Fo(2¢, X¢t)]
[10]]. The added gating function GGy can modulate the rate of change in latent dynamics based on both
x4 and z;. This allows the multi-region extension of the gnODE (MR-gnODE) described in Section
[2 to learn smooth, time-varying, nonlinear dynamics rather than linear [3] or discrete nonlinear
dynamics (rSDLS) [4.[7]. Unlike all previous approaches described above, which identify dynamics
through discrete changes in latent state (z¢_1 — 2z), MR-gnODE identifies dynamics by inferring
a velocity field (flow field) conditioned on z; and x;. This benefits interpretability, as Fj directly
expresses the attractor structure [9] rather than requiring the sampling of trajectories to identify fixed
points in communication dynamics, as is necessary with RNNs [[13]. Though many studies identify
low-rank structure in RNNs, it’s Kim et al. [10] showed that high-dimensional GRUs did not always
favor low-dimensional solutions to low-dimensional tasks while gnODEs did - making them a more
ideal choice for accurately inferring low-dimensional dynamics.

2 Multi-Region Gated Neural ODE (MR-gnODE)

We now present our Multi-Region Gated Neural ODE (MR-gnODE) framework, which extends
gated neural ODEs (gnODE) to explicitly model communication dynamics between brain regions.
Our approach decomposes multi-region systems into three key components: within-region gnODEs,
between-region communication gnODEs, and region-specific readouts.

2.1 Model formulation

Consider a system with R regions, where each region 7 has latent state z] € R%" and communication

channels mESHT) € R capture information flow from region s to region 7. The MR-gnODE region
dynamics shown in Figure[Ib are given by:
Tz, = Gy (z,f + mg_w),x:) ® [—Z: + Fy (z: + mi*”,x;)} )
where aggregated messages are defined as:
m](sﬁr) _ Zw(sﬂr) _wg(mgsﬁr)) )
s#r

and communication dynamics are formulated as:

Tmm,(fs_W) _ Gygn (Zg’mgs—n‘)) o |:_m§s—>7‘) + an (Zf’mgs—n‘))} 3)



84
85
86
87
88

89
90
91

92
93
94
95

96

97
98
99

100
101
102
103
104

105

106

107
108
109
110
111
112
113
114

a b

Gated Neural ODE (gnODE) Multi-Region Gated Neural ODE (MR-gnODE)
X0:t Zo
— i =Gh ) o [ ()] ||| =
T20= Go(20,%0) @ [—20 + Fa(20,%0)] ‘ W,z: + b, | = %o
A . regions
Zt = Zg-1+ TZg-1 ] time .
- '
ME . NPT H Wiz + by | = %t na= Gy o _%
TTnmgsﬂr) —ap (zf‘mgsam) o [_miﬁr) L Ep (Z:ngsﬂr)):l

Figure 1: Gated Neural ODE architecture. (a) Single-region gated Neural ODE (gnODE) showing
the gating mechanism Gy @ [—z + Fy], temporal dynamics, and linear readout W,.z; + b, that
maps latent states to observations. (b) Multi-Region gated Neural ODE (MR-gnODE) with multiple
interacting regions connected through communication channels. Each region maintains its own latent
dynamics while receiving aggregated messages from other regions. Note that panel A shows temporal
dynamics of gnODE while panel B shows communication dynamics at a single timestep.

Fj and Fj* are multi-layer perceptrons (MLPs) defining nODEs for region dynamics z and com-
munication dynamics i, respectively. G and G* are MLPs that gate regional and communication
dynamics, respectively, through element-wise scaling rate of change in the latent dynamics produced
by Fjj and Fj". 1 is a neural network that transforms communication channel states into region-
dimensional space, and w(*~") are learnable scalar weights that enable asymmetric communication
effects between regions. The aggregated message mfﬁr) is computed by summing all transformed
incoming communication channels before adding to the region state. To model activity readouts, we

reconstruct the observable data for each region using:
x; = Wyz; + b, 4

which is a linear readout that maps the latent state of region r to reconstructed neural activity Xj.
This allows the model to be trained by minimizing the reconstruction error between the model’s
predictions, X, and the observed neural data, x;. As represented in Figure , the latent state of
a single region only evolves according to inputs X;, its own latent state z;", and the aggregated
incoming messages from other regions mﬁ”).

Training and implementation: We train MR-gnODE using Euler integration for the forward pass
with time step dt = 0.01, updating states as z; 4 = z; + dt - z; and my g, = my + dt - m, (Fig
[Ib). The total loss combines reconstruction accuracy with communication regularization:

R T T
L= ZZHX:_)A(§||2+)‘comm2”mt” &)

r=1t=1 t=1
where X] = W"z] are region-specific linear readouts, x; are target outputs, and Acomm penalizes
excessive communication to prioritize learning internal dynamics. Model parameters include velocity
field networks F" and F, gating networks G" and G™, communication transformation 1, asym-
metric weights w(*~7"), and readout matrices V. Parameters are updated using backpropagation

through time (BPTT).

3 Experiments
3.1 Decision-Motor Task

We first evaluated MR-gnODE on a synthetic decision-motor task designed to test inter-regional
communication. The task consists of a multi-region RNN - an evidence integration RNN, and a
motor control region RNN. During training, the evidence region receives noisy sensory input for
15 time steps and must integrate this information to guide the motor region’s output velocity for a
leftward or rightward reach over the remaining 15 time steps of the trials (Fig.[2h). The evidence
region is trained to produce the correct integration of the noisy signal. The motor region is trained to
produce the correct velocities while only receiving communication input from the evidence region.
The resulting evidence RNN learns low-dimensional decision integration dynamics as represented in
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Figure2p, where the PCA transformation of the evidence RNN hidden state diverges for left evidence
and right evidence trials. Figure Zp also demonstrates that motor RNN learns rotational dynamics [2]
to produce sinusoidal velocity profiles for left/right reaches. The specific objective is described in

Appendix [6.2]
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Figure 2: Decision-motor task validation and model performance. (a) Task architecture with
evidence integration and motor control regions connected by communication channels. (b) Ground
truth RNN dynamics showing diverging trajectories for left/right evidence trials in evidence region
and rotational dynamics in motor region. (¢) Model reconstruction performance comparing MR-
enODE against baselines. (d) MR-gnODE predictions vs ground truth trajectories for left/right trials.
(e) Communication analysis showing evidence-motor communication diverges during accumulation
while motor-evidence communication diverges near execution. (f) Robustness under noisy observa-
tions (left) and partial observations (right). (g-h) MR-gnODE generated flow fields for regional and
communication dynamics and mean trajectories for held-out left/right trials. MR-gnODE produces
interpretable integration and rotational region dynamics (g) and integration communication dynamics

(h)

Next, we trained several multi-region models to reconstruct the observed hidden state data from
the Evidence-Motor RNN data-generating model. Figure 2t demonstrates that MR-gnODE and
mp-rSDLS [4] both learn to nearly perfectly reconstruct the neural population dynamics of both
regions, achieving 0.97 and 0.95 R? scores on test data. This is verified in Figure [2d, where the first
PC of MR-gnODE mean predictions for left and right trials match the first PC of ground truth RNN
data for these trials. For left/right conditions, MR-gnODE evidence accumulation (evidence PC1)
diverges during the integration period, while PC1 of the motor region does not diverge until just before
execution. The communication analysis in (Fig. 2)e demonstrates that MR-gnODE successfully
recovers both the directionality of evidence to motor communication but also the informational
content as the first PC of evidence-motor communication diverges as evidence is accumulated for left
and right trials. The first PC of motor-evidence communication does not diverge until just before
execution.

Visualizing the first PC or evaluating models based on R? and mean squared error (MSE) in recon-
struction tasks can be misleading, as a model that learns the identity transform could achieve perfect
reconstruction on training and testing data. To investigate whether MR-gnODE is truly recovering
neural dynamics, we create two challenging settings for evaluation: noisy observations and partial
observations. In noisy observations, the input neural data x; is corrupted as x; + N(0, 0.1) but the
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model must still predict x;. Though we could not evaluate mp-rSLDS under this setting due to library
constraints (Appendix [6.1]), we added a Kalman filter baseline which explicitly models Gaussian noise,
making it a competitive baseline. Figure 2] demonstrates that while Reduced Rank Regression (RRR)
performance is significantly hindered in this setting, both Kalman Filter and MR-gnODE maintain
near perfect reconstruction of uncorrupted neural data. The right panel of Figure P demonstrates
model performance where the model must predict the full x; while being trained on inputs with 10%
of neurons removed. Among 5 cross-validated folds with different held-out neurons and different
train/test data, MR-gnODE successfully recovers the intrinsic dynamics of both regions, while RRR
fails to do so. The loss function and weight updates for MR-gnODE did not account for estimation
error in the held-out neurons, so a mapping from held-in to held-out neurons could not be learned
during training.

A unique feature of MR-gnODE is that it models region and communication dynamics as ODEs,
so we can also test the model recovered the true Evidence-Motor RNN dynamics by investigating
gradients (2) of the latent state z during trials. Figure 2g-h shows PCA-projected flow fields for the
evidence region of the trained MR-gnODE model, the motor region, and bidirectional communication
channels. For each 3D visualization, we compute z at grid points using example trial inputs, with
non-visualized dimensions fixed to mean values from left (blue) versus right (red) decision trials (see
Section for implementation details). The evidence region exhibits integrator-like flow toward
decision-specific attractors. The motor region exhibits partial rotational dynamics, with opposing
flow fields for leftward versus rightward reach conditions. Communication channels, m and m,
show context-dependent flow patterns: evidence-to-motor channels exhibit divergent flows based on
decision context, while motor-to-evidence channels remain largely quiescent except near movement
states. These conditional flow projections demonstrate that MR-gnODE recovers the dynamical
structure of evidence integration, communication of evidence to the motor region, and the motor
control dynamics. Notably, this result differs from traditional flow-field analysis, which is not
normally dependent on inputs x; [10} [11]. We emphasize the importance of inferring communication
flow without requiring inputs or dimensions fixed to mean values for future work.

3.2 1IBL Motor Control Task

To demonstrate the utility of MR-gnODE in inferring neural dynamics from data, we analyzed multi-
region mouse motor cortex data from the International Brain Laboratory (IBL) using MR-gnODE .
We used a session with simultaneously recorded neural populations from primary motor cortex (MOp,
162 neurons) and secondary motor cortex (MOs, 46 neurons) during the IBL visual decision task [12]].
Neural activity was aligned to movement onset (—200ms to +300ms) and binned at 50ms resolution.
The MR-gnODE model was configured with region-specific hidden dimensions (MOs -32 units,
MOp - 64 units) and trained to reconstruct the population dynamics while inferring inter-regional
communication through the learned coupling parameters.

Figure [3p shows that MR-gnODE achieves accurate reconstruction of both MOp and MOs population
activity. The observed MOp responses (Fig.[3p,c) display characteristic movement-related modulation
patterns that are moderately captured by the model predictions (Fig. ,c right), achieving R? = 0.5
on held-out trials. Characteristic of the known functions of the secondary motor cortex in movement
planning and the primary motor cortex in movement initiation and execution, Figure[3p shows that the
distance between neural population activity projected into PC space for left and right wheel turn trials
diverges sooner in MOs than MOp. The trained MR-gnODE model demonstrates this directional
flow of information in Figure [3d, where the norm of average communication channel activity from
MOs to MOp peaks during movement preparation and early execution, while MOp feedback to
MOs gradually increases as movements become more prominent. Figure [3g shows some, albeit
non-significant, divergence in MOs to MOp left turn and right communication dynamics leading up
the movement. This divergence does not appear in MOp to MOs feedback until the wheel turn is
executed. Despite only a minimal difference in average communication channel activity for left and
rightward movements, analysis of the movement-conditioned Jacobian of communication channel
states (Fig. [3ff) provides a clearer picture of diverging neural states leading up to left/right movements.

o (172 2—1) _ 9m>Y
8m(1~>2) and J( ) - am(2~>1)’

m( ") represents the communication channel states between regions (with MOp = 1, MOs = 2). By
computing separate Jacobians for left and right choice trials (e.g., J l(esz Y and J (QHI)), we measure

right
(Jete, Tright)
[ Trefe| | T righe|

For each communication channel, we compute J(!72) = where

the choice-dependent angular divergence 6 = arccos ( ) quantifying how communication
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Figure 3: IBL motor cortex multi-region communication dynamics. (a) Primary motor cortex
(MOp) observed population activity aligned to movement onset. (b) Distance between PCA transform
of neural population activity for left vs right wheel turns. (¢) Secondary motor cortex (MOs) neural
responses and MR-gnODE reconstruction. (d) Norm of MR-gnODE MOp/MOs mean communication
channel activity. (e) Same as d. but mean taken over left and right trials seperately. MOs on left
and MOp on right. (f) Jacobian angular divergence analysis computing gradients of communica-
tion dynamics for left vs right trials and measuring angular separation between condition-specific
messaging.

dynamics differentiate based on behavioral choice. Here, MOs to MOp communication channel
choice-dependent divergence significantly increases during movement preparation (—100ms to
Oms) while MOp to MOs communication demonstrates little choice-dependent divergence. Thus,
we conclude the MR-gnODE model learned communication patterns consistent with the known
hierarchical organization of the motor cortex. MOs contribute higher-level control signals that
appear during planning and propagates this information to MOp, which participates in initiation
and execution. Together, these results demonstrate that MR-gnODE not only accurately models
multi-region neural dynamics but also reveals interpretable communication principles from neural
data.

4 Discussion

Understanding how distinct brain regions coordinate the neural population dynamics to generate
behavior remains a fundamental challenge in neuroscience. Most previous approaches for modeling
population dynamics have focused on a single region, but as more multi-region data becomes publicly
available, we can start to approach modeling communication dynamics. Here, we introduced MR-
gnODE, a multi-region neural ODE framework that simultaneously learns within-region dynamics
and inter-regional communication patterns from neural recordings. By directly modeling region and
communication velocity fields (z, ), we used MR-gnODE to visualize inferred phase portraits (Fig.
[k-h) and identify changes in the movement-conditioned Jacobian of communication dynamics in the
motor cortex (JMOs=MOp Fig [3F). Previously proposed multi-region approaches like MR-LFADS
or mp-rSLDS would require sampling trajectories [6] to visualize attractor structure.

Our experiments demonstrate that MR-gnODE accurately captures both synthetic and biological
multi-region dynamics while revealing interpretable communication principles. Yet, much future
work is needed to complete and validate the MR-gnODE framework. In future work, we aim to
enable the model to receive or infer exogenous inputs u; and add variational inference for z and
m. Further ablation experiments and improved baselines, such as MR-LFADS [13]], are required to
validate/contextualize the model’s capacity for identifying neural dynamics. We hope MR-gnODE
can leverage emerging large datasets of multi-region neural activity for data-driven discovery of rich
brain-wide communication dynamics. Regardless, this work aims to emphasize the importance of
interpretable modeling of multi-region communication flow dynamics.
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6 Technical Appendices and Supplementary Material

6.1 Code Availability

All code is available at : REDACTED FOR DOUBLE BLIND REVIEW. For mp-rSLDS, we used
the SSM library: https://github.com/lindermanlab/ssm.

6.2 Motor Evidence RNN

Model architecture: The multi-region RNN consists of two functionally specialized modules
connected via a communication pathway:

Evidence integration RNN: The evidence region is implemented as an LSTM network that processes
noisy sensory inputs: hs, c; = LSTM(2¢, hy—1,¢-1). ¢ € R? represents the bivariate evidence
input at time ¢, and A, ¢; € R%* are the hidden and cell states respectively. The evidence integration
output is computed as: y; = Wh; + b. where W and b are learned parameters.

Motor control RNN: The motor region is implemented as a separate LSTM that receives communi-
cation signals from the evidence region: h;, c; = LSTM([s{°™™; pt—1], ht—1, ct—1) where the input
concatenates the communication signal s$°™™ € R with the previous motor position p;_; € R2. The
motor velocity output is a 2-d vector: v, = Why + .

Evidence-motor communication: The communication signal from evidence to motor region is
computed as:s{®™™" = WM h, 4 b where W™ transforms the evidence hidden state into a
scalar communication signal.

Task data generation: Training data is generated for a decision-motor task with the following
structure: During the evidence phase (¢ € [1,T.] where T, = 15 time steps), noisy sensory inputs are
generated:

(1—d;) - k+e?

(2)
T
di K+ Egl)

t

where d; € {0, 1} indicates the target direction (left/right) for trial 4, x = 0.3 is the coherence level,
and e; ~ N(0,07) with o = 0.7 represents Gaussian noise.

The ground truth evidence integration is computed as: I; = tanh (22:1 (a:,(cl) — mfco)))

In the motor phase (¢ € [T, T]) Target velocities are generated with confidence modulation: v, =
d; - a; - f(t) + ny where:
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* «; = clip(|I7,]/20,0, 1) is the confidence derived from evidence strength

* f(t) =0.5sin(m - %:%) defines the velocity profile

* 1, is smooth noise generated from low-frequency sinusoids with random phase

Training procedure: The model is trained using two mean squared error losses:

Evidence integration loss:

T
1
Lo=7D (v — 1) (6)
t=1
Motor velocity loss:
T
1 .
L= D |10 = w3 )
t=15
The total loss is:
L=Le+ L ®

6.3 Model parameters

The parameters used in all experiments can be found in: GIT REPO FOLDER RETRACTED FOR
DOUBLE BLIND REVIEW

6.4 Input Conditioned Flow Field Visualization

To visualize the dynamics of MR-gnODE, we project the high-dimensional flow fields onto three-
dimensional subspaces using PCA. We construct separate visualizations for each region z(") and
communication channel m (%),

Given trajectories {s,f)}f\]:‘“l"‘s from experimental trials where s; = [zg ), zi , we

visualize the dynamics of each region z(") as follows. We compute PCA on the concatenated trial
data for z(") to obtain projection matrix V, € R% *3 containing the first three principal components.

1) ml(f[)ﬁl) m§140)]

To compute the flow field, we create a grid G in the 3D PCA space spanning the data distribution. At
each grid point p € G, we:
1. Inverse transform to original space: z(")* = V,.p + z(")
2. Construct full state using mean state 5(°) from decision type ¢ with z(") replaced by z(")*
3. Compute MR-gnODE dynamics: 7z = Gy(z,x(9) ® [~z + Fy(z,x9)]
4. Project flow back to PCA space: p = VTTZ(’")

where x(°) represents example trial inputs for decision type ¢. Mean trajectories for each decision type

are projected as p{”) = V7 (z\" —z("). The same procedure is applied to visualize communication

channels m(" %),
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